The Ghana Randomized Air Pollution and Health Study (GRAPHS):

A mid-study assessment of exposure monitoring
Collaborating Institutions
(Since 2006)

KHRC
- Seth Owusu-Agyei
- Kwaku Poku Asante
- Charlotte Tawiah-Agyeman
- Charles Zandoh
- Alex Manu
- Ellen Boamah
- Ken Asayah
- Nicholas Amoako

- Patrick Kinney
- Darby Jack
- Steve Chillrud
- Robin Whyatt
- Ashlinn Quin

- Blair Wylie
ABOUT GRAPHS
Kintampo, Ghana, West Africa

Primary fuel used for cooking

KDSS Cooking Practices Module

- wood
- lpg
- kerosene
- dung
- charcoal
- electricity
- other
- na

11 Jan 2008
Ghana-specific profile 2010

Burden of disease attributable to 15 leading risk factors in 2010, expressed as a percentage of Ghana DALYs
Critical questions:

• How clean is clean enough...
 – what interventions will get us there...
 – and what distribution strategies will deliver equitable, enduring public health results?

• Our study is designed to provide
 – Exposure response data for birth weight and child pneumonia
 – Evidence on the efficacy of stoves delivered to pregnant women (a scalable distribution strategy)
 – Relevant evidence Government of Ghana (efficient biomass cookstoves and clean fuels)
Study hypotheses

• Use of improved cook stoves before 3rd trimester of pregnancy will lead to:

 • a significant increase in average birth weight in newborns.

 • a significant reduction in the rate of physician-assessed severe pneumonia during the 1st 12 months of life.
Design: Cluster-randomized controlled trial involving 35 communities in the KHDSS area

Biolite

LPG

Control
Methods

• Sample size
 – 1415 maternal-infant pairs

<table>
<thead>
<tr>
<th></th>
<th>Cluster</th>
<th>Births</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biolite</td>
<td>13</td>
<td>455</td>
<td>525</td>
</tr>
<tr>
<td>Control</td>
<td>13</td>
<td>455</td>
<td>525</td>
</tr>
<tr>
<td>LPG</td>
<td>9</td>
<td>315</td>
<td>365</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1225</td>
<td>1415</td>
</tr>
</tbody>
</table>

• Study outcome measures
 – Infant weight at birth, controlling for gestational age
 – Infant severe pneumonia (FW assessed & physician confirmed)
As of 12 August 2014

Enrolled: 1115 households

- BioLite: 408
- LPG: 352
- Control: 355

Exposure Monitoring:
- 4824 CO measurements (72 hrs)
- 818 PM measurements (72 hrs)

Births:
- 615 (Assessed within 24 hours of birth)
EXPOSURE ASSESSMENT: Pilot exposure studies
PM$_{2.5}$ Site Exposure assessment
PM$_{2.5}$ (Mean ± SE) Personal and Area Concentrations (n=29)

![Bar graph showing PM$_{2.5}$ concentrations for enclosed, semi-enclosed, and open cooking environments.](chart.png)

- Enclosed: Area = 440 ± 102, Personal = 102
- Semi-enclosed: Area = 614 ± 145, Personal = 145
- Open: Area = 350 ± 174, Personal = 174

Kruskal-Wallis p > 0.05
PM$_{2.5}$ Assessment for different stoves
Mean Session Average PM 2.5 Concentration by Stove Type

PM 2.5 (µg/m³)

- 3 Stone: 955.6
- Stove Tec: 350.5
- LPG: 33.8
- Ambient 1: 47.6
- Ambient 2: 75.3

Stove Type
EXPOSURE ASSESSMENT: During Trial
Goals of exposure assessment

• Provide reliable estimates of individual exposures for use in exposure response analysis
• Determine sources of heterogeneity in treatment effects (who benefits most from the intervention)
Sampling approach

• 7 x 72 hour exposure monitoring sessions
 – Round 1 (CO only): at enrollment (baseline)
 – Round 2 (PM + CO): 3 weeks after intervention
 – Round 3 & 4 (CO only): spaced over remaining antenatal period
 – Round 5 (CO only): age 1 month
 – Round 6 (PM + CO): age 3 months
 – Round 7 (CO only): age 9 month

Post-natal
Instruments

RTI microPEM PM$_{2.5}$ monitor

Lascar CO monitor
EXPOSURE RESULTS
Lascar – deployment

- Database contains 4856 observations (as of August 15)
 - 568 children
 - 4288 adult

- Approx. 7% failure rate
 - 23 had mean of zero
 - 292 were short in duration (< 48 hours)
 - Due to battery or device failure
Measurements to date (as of 8/15)

Session 1: 1092
Session 2: 986
Session 3: 820
Session 4: 621
Session 5: 783
Session 6: 395
Session 7: 0
Distribution of CO by sampling session (Not by Study Groups)
CO Concentrations: Adults versus infants

Adults: 1.11ppm (0 – 4.9)

Children: 0.7ppm (0.0 – 4.8)
microPEM deployment summary

- 830 deployments
- Still processing data
- At present we have 635 usable observations (77% success rate), but this will increase as we reprocess files
- Gravimetric data is forthcoming. Currently using a correction factor from prior work in Ghana (van Vliet et al 2014)
Geometric Mean Concentration: 84.5 microgm/m³
(Range 0.81 – 249.9)
Day-by-day compliance for 72 hour microPEM sessions

Day 1

Day 2

Day 3
Lessons and challenges

• CO monitoring
 – Lascar sampling has gone well, and data appear to be reliable (against span gas)
 – Large scale 72 hour sampling is feasible in low income settings

• PM2.5 monitoring
 – Data management is substantial
 • complex data files require substantial post-processing
 – Compliance is better than we expected
Quality control is key

- Check all units every 3 months using certified span gas (50 ppm)

- Use correction factor to adjust data from that unit

- Inspect data at download to verify plausibility

- Duplicate samples every 20 deployments
Exposure monitoring require huge logistics

But

Feasible
Next steps

• Timelines:
 – Target for ending enrollment: October 2014
 – Target for ending birth data capture: March 2015
 • First Exposure data will be available by arm
 – Target for ending ALRI surveillance: March 2016
 – Final reporting: Summer 2016

• Use experiences to
 – support Government of Ghana LPG role out
 – evaluate new health interventions
 – Train others to sustain capacity developed
Acknowledgements

• Community members and study participants
• Ghana Health Service and health facilities in the study area
• Advisory committee
• Funders
 – National Institute of Environmental Health Sciences
 – Thrasher Research Fund
 – Global Alliance for Clean Cookstoves
 – Earth Institute at Columbia University
 – Kintampo Health Research Centre